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Background: TMS (transcranial magnetic stimulation) and DTT (diffusion tensor tractography) have different
advantages in evaluating stroke patients. TMS has good clinical accessibility and economical benefit. On the
contrary, DTT has a unique advantage to visualize neural tracts three-dimensionally although it requires an
expensive and large MRI machine. Many studies have demonstrated that TMS and DTT have predictive
values for motor outcome in stroke patients. However, there has been no study on the comparison of these
two evaluation tools. In the current study, we compared the abilities of TMS and DTT to predict upper motor
outcome in patients with ICH (intracerebral hemorrhage).
Methods: Fifty-three consecutive patients with severe motor weakness were evaluated by TMS and DTT at
the early stage (7–28 days) of ICH. Modified Brunnstrom classification (MBC) and the motricity index of
upper extremity (UMI) were evaluated at onset and 6 months after onset.
Results: Patients with the presence of a motor evoked potential (MEP) in TMS or a preserved corticospinal
tract (CST) in DTT showed better motor outcomes than those without (p=0.000). TMS showed higher

positive predictive value than DTT. In contrast, DTT showed higher negative predictive value than TMS.
Conclusions: TMS and DTT had different advantages in predicting motor outcome, and this result could be a
reference to predict final neurological deficit at the early stage of ICH.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

Stroke is a leading cause of major adult disability. Motor weakness is
one of the most serious disabling sequelae of stroke, with over 50% of
stroke patients experiencing a residual motor deficit. Predicting an
accurate prognosis formotor function in stroke patients is important, as
it could provide useful information for specific rehabilitation strategies
and final motor outcomes. Therefore, many previous studies have
attempted to predict motor outcomes in stroke patients using various
methods, including clinical findings [1,2], radiologic measurements
[3,4], electrophysiological methods [5,6], and functional neuroimaging
[7,8].
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In stroke patients, transcranial magnetic stimulation (TMS) has
been most commonly used to predict motor outcome by evaluating
the status of the corticospinal tract (CST) through the motor evoked
potential (MEP) [5,6,9,10]. In contrast, diffusion tensor tractography
(DTT), which is derived from diffusion tensor imaging (DTI), allows
the visualization of three-dimensional images of the CST by virtue of
its ability to capture water diffusion characteristics [11]. Several
recent studies have reported on the predictive value of DTT for motor
outcome in stroke patients [12–17]. Therefore, TMS and DTT might
have different advantages in predicting motor outcome in stroke
patients. However, no study has yet applied these two evaluation
tools simultaneously and compared their capacities for prediction.

In the current study, we compared TMS and DTT and investigated
whether TMS and DTT have different predictive values for motor
outcomes in patients with ICH.

2. Methods

2.1. Subjects

Fifty-three consecutive patients (31 males; average age, 54.0
(range: 41–79)) were recruited according to the following inclusion
ghts reserved.
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criteria: (1) first ever hemorrhagic stroke, (2) severe weakness of the
affected extremities to the extent of an inability to move without
gravity and complete weakness of the affected hand (finger flexor and
extensor) and ankle (ankle dorsiflexor and plantarflexor) within 24 h
of onset, (3) a hematoma involving the CST at the corona radiata (CR)
or posterior limb of internal capsule level (PLIC) on brain MRI, and
confirmed by a neuroradiologist (Byun WM) [18–20], (4) DTT
scanning and TMS evaluation were performed simultaneously within
2 days of each other at an early stage (within 7–28 days after ICH
onset), (5) absence of serious medical complications such as
pneumonia or cardiac problems from onset to final evaluation, and
(6) no medication that could influence the motor evoked potential
(MEP) [21], inhalation anesthetics [22], anticonvulsants, or muscle
relaxants, at the time of TMS. Patients who showed apraxia, somato-
sensory problems, or severe cognitive problems (Mini-Mental State
Examination <25) were excluded from the study. All patients provided
written informed consent prior to the study, and the ethics committee
of Yeungnam university hospital approved the study protocol.
2.2. Clinical evaluation

The motor function of each patient was evaluated twice: at onset
(within 24 h of symptom onset) and at 6 months after onset. The
function of the affected hand was categorized according to the
modified Brunnstrom classification (MBC) [23,24]: 0 (unable to move
fingers voluntarily), 1 (able to move fingers voluntarily), 2 (able to
close hand voluntarily; unable to open hand), 3 (able to grasp a card
between the thumb andmedial side of the index finger; able to extend
fingers slightly), 4 (able to pick up and hold a glass; able to extend
fingers), 5 (able to catch and throw a ball in a near-normal fashion;
able to button and unbutton a shirt). The motricity index of upper
extremity (UMI) [25] was used to measure motor function, with a
Fig. 1. Grouping according to the results of transcranial magnetic stimulation and diffusion te
(presence of motor evoked potential) and B: TMS (−) group (absence of motor evoked poten
of corticospinal tract) and D: DTT (−) group (disruption of corticospinal tract). TMS: trans
maximum score of 100. The reliability and validity of the MI and MBC
are well-established [23–25]. The clinical evaluators were blinded to
the TMS and DTT data, and the TMS and DTT analyzerswere blinded to
the clinical data.

2.3. Transcranial magnetic stimulation

TMS was performed using a Magstim Novametrix 200 magnetic
stimulator (Novametrix Inc., Wallingford, CT, USA) with a 9 cm mean
diameter circular coil. Cortical stimulation was performed with the
coil held tangentially over the vertex. The left hemisphere was
stimulated by a counterclockwise current, and the right hemisphere
was stimulated by a clockwise current. MEPswere obtained from both
abductor pollicis brevis muscles (APBs) in a relaxed state. The
excitatory threshold (ET) was defined as the minimum stimulus
required to elicit an MEP with a peak to peak amplitude of 50 μV, or
greater in two of four attempts. Stimulation intensity was set at the ET
plus 20% of the maximum stimulator output. One hemisphere was
stimulated four times at a minimum of 10 second intervals. The MEP
with the shortest latency and the largest amplitude was adopted. The
patients were classified into two groups according to the presence of
MEP on the affected APB: TMS (+) group— the patients who showed
MEP in the affected APB (23 patients), and TMS (−) group — the
patients who did not show MEP in the affected APB (30 patients)
(Fig. 1).

2.4. Diffusion tensor imaging

Diffusion tensor images were acquired using a 1.5 T Philips
Gyroscan Intera (Hoffman-LaRoche, Ltd, Best, the Netherlands)
equipped with a Synergy-L Sensitivity Encoding (SENSE) head coil
with a single shot spin echo planar imaging sequence. For each of the
nsor tractography. The results of TMS (upper low)were classified into A: TMS (+) group
tial). The results of DTT (lower low) were classified into C: DTT (+) group (preservation
cranial magnetic stimulation and DTT: diffusion tensor tractography.
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32 non-collinear and non-coplanar diffusion sensitizing gradients, we
acquired 60 contiguous slices parallel to the anterior commissure–
posterior commissure line. The imaging parameters used were:
matrix=128×128, field of view=221×221 mm2, TE=76 ms,
TR=10,726 ms, SENSE factor=2, echo planar imaging factor=67,
b=600 mm2 s−1, and slice thickness=2.3 mm. Fiber connectivity
was also evaluated using FACT (fiber assignment by continuous
tracking), a 3D fiber reconstruction algorithm contained within PRIDE
software (PhilipsMedical Systems) [26]. The termination criteria used
were fractional anisotropy (FA)<0.2 and direction threshold=750,
as determined by a previous study on the optimal tractability
threshold of FA [27]. A seed region of interest (ROI) was drawn in
the CST portion of the mid pons on 2D FA color maps, and another ROI
was drawn in the CST portion of the lower pons on a 2D FA color map.
Fiber tracts passing through both ROIs were designated as the final
tracts of interest. The patients were classified into two groups
according to the integrity of the CST in the affected hemisphere:
DTT (+) group — the patients whose CST was preserved around the
hematoma (32 patients), and DTT (−) group — the patients whose
CST was interrupted by the hematoma (21 patients) (Fig. 1).
2.5. Statistical analysis

In the current study, statistical analysis was performed in two steps.
In the first step, the significance of the parameters influencing motor
outcomeswas assessed. Motor and functional scores at onset in the (+)
and (−) groups on TMS and DTTwere compared using an independent
t-test, and the changes of motor and functional scores from onset to
6 months after onset were compared using a paired t-test. The
differences in the improvement between the TMS and DTT groups
were analyzed using one way ANCOVA, controlling for the motor
dysfunction at the onset of ICH. In the second step, the patients were
classified into two groups, the Good group and Poor group using two
step cluster analysis, according to the results of MBC and UMI. Median
value of MBC was 2.45 and patients with above 3 score of MBC were
classified to the Good group and patients with below 2 of MBC were to
the Poor group. For UMI,median valuewas 62, patientswith above 62 of
UMI belonged to the Good group and patients with below 62 of UMI
were to the Poor group. The predictive values of TMS and DTT were
compared using positive predictive values and negative predictive
values according to the statistical classification in the Good or Poor
group and responses of TMS and DTT. The adopted level of significance
was α<0.05. Statistical analyses were conducted using SPSS 12.0
software (SPSS Inc, Chicago, USA).
Table 1
Demographic and clinical data of patients.

Variables TMS group Total

TMS (+) TMS (−)

Number (%) 23(100.0) 30(100.0) 53(100.0)
Age (years) 55.30±12.2 53.30±8.34 54.00±10.00
Lesion side Right (%) 13 (46.4) 15(53.6) 28(52.8)

Left (%) 10(40) 15(60) 25(47.2)
Days to TMS or DTT 17.43±3.69 16.73±3.98 17.16±3.15
MBC 0a 0a 0a

UMI 4.70±7.96 2.60±7.07 3.94±8.16
Risk factor (%) 22(95.7) 25(83.3) 47(88.7)

NIDDM (%) 7(30.4) 9(30) 16(30.2)
HTN (%) 12(52.2) 17(56.7) 29(54.7)
Afib (%) 3(13.0) 5(16.7) 8(15.1)
Hchol (%) 11(47.8) 9(30) 20(37.7)
Cig (%) 14(60.9) 13(43.3) 27(50.9)

Values: mean±standard deviation.
TMS: transcranial magnetic stimulation, DTT: diffusion tensor tractography, UMI: motrici
hypertension, Afib: atrial fibrillation, Hchol: hypercholesterolemia, and Cig: cigarette smok

a All patients showed scores of 0.
3. Results

3.1. Clinical evaluation

Twenty-eight of 53 patients had a hematoma in the right
hemisphere, and the other 25 patients had a hematoma in the left
hemisphere (Table 1). The duration (days) from onset of ICH to TMS
(17.16±3.15) and to DTT scanning (17.04±3.84) did not differ
between groups (TMS: p=0.515; DTT: p=0.525). Forty-seven
(88.7%) of 53 patients had risk factors; 29 (54.7%) had hypertension,
16 (30.2%) had noninsulin dependent diabetes mellitus, 8 (15.1%) had
atrial fibrillation, 20 (37.7%) had hypercholesterolemia, 27 (50.9%)
were cigarette smokers, and 36 (67.9%) patients had more than one
risk factor. The distributions of risk factors did not differ between the
TMS and DTT groups (+/−) (TMS: p=0.217; DTT: p=0.200). The
MBC scores measured at onset were 0 in all patients. There were no
differences in the UMI scores at onset between the (+) and (−)
groups of TMS and DTT (TMS: p=0.146, DTT: p=0.110).

There was also significant changes in theMBC score from onset (0)
to the 6 month evaluation (3.45±2.11) (p=0.000) (Table 2). The
UMI score was significantly improved between the onset (3.94±
8.16) and 6 month evaluations (62.00±30.25) (p=0.000).

In clinical classification according to MBC scores, 25 patients
(47.2%) belonged to the Good group, the other 28 patients (52.8%) to
the Poor group. In classification according to UMI scores, 31 patients
(58.5%) belonged to the Good group and 22 patients (41.5%) to the
Poor group (Table 3).

3.2. Transcranial magnetic stimulation

When the changes in the MBC scores from onset to the 6 month
evaluation were compared, the TMS (+) group (5.52±0.79) showed
better recovery than the TMS (−) group (1.87±1.22) (p=0.000). As
for UMI scores, the TMS (+) group (84.30±12.88) also showed
greater improvement than the TMS (−) group (40.63±21.02)
(p=0.000) (Table 2).

In classification by MBC, 22 (95.7%) of 23 patients in the TMS (+)
group belonged to the Good group, while only 3 (10.0%) of 30 patients
in the TMS (−) group belonged to the Good group. Twenty-seven
(90.0%) of 30 patients in the TMS (−) group belonged to the Poor
group, but only 1 (4.3%) of 23 patients in the TMS (+) group were
classified in the Poor group. In classification by UMI, all of 23 patients
in the TMS (+) group belonged to the Good group, while 8 (26.7%) of
30 patients in the TMS (−) group belonged to the Good group.
Twenty-two (73.3%) of 30 patients were categorized in the Poor
p value DTT group Total p value

DTT (+) DTT (−)

0.414 32(100.0) 21(100.0) 53(100.0) 0.121
0.473 55.10±11.60 52.80±7.62 54.00±10.00 0.413
0.637 17(60.7) 11(39.3) 28(52.8) 0.958

15(60) 10(40) 25(89.3)
0.515 17.31±3.50 16.62±4.36 17.04±3.84 0.525

0a 0a 0a

0.146 4.72±8.89 2.76±6.93 3.94±8.16 0.110
0.217 30(93.8) 17(81.0) 47(88.7) 0.200
0.729 9(28.1) 7(33.3) 16(30.2) 0.185
0.745 16(50) 13(61.9) 29(54.7) 0.394
0.302 4(12.5) 4(19.0) 8 (15.1) 0.365
0.185 13(40.6) 7(33.3) 20(37.7) 0.592
0.206 19(59.4) 8(38.1) 27(50.9) 0.130

ty index of upper extremity, NIDDM: noninsulin-dependent diabetes mellitus, HTN:
ing.



Table 2
The changes of motor function according to the group of transcranial magnetic
stimulation and diffusion tensor tractography.

Variables Group Initiala 6 month Difference p value

Total
MBC 0b 3.45±2.11 3.45±2.11 0.000
UMI 3.94±8.16 62.00±30.25 59.15±27.86 0.000

TMS
MBC TMS (+) 0b 5.52±0.79 5.52±0.79 0.000

TMS (−) 0b 1.87±1.22 1.87±1.22
UMI TMS (+) 4.70±7.96 89.00±14.02 84.30±12.88 0.000

TMS (−) 2.60±7.07 41.30±21.70 40.63±21.02
DTT

MBC DTT (+) 0b 4.69±1.73 4.75±1.70 0.000
DTT (−) 0b 1.57±0.87 1.57±0.87

UMI DTT (+) 4.72±8.89 78.81±22.89 74.09±21.10 0.000
DTT (−) 2.76±6.93 36.38±20.64 33.62±21.27

Values: mean±standard deviation.
TMS: transcranial magnetic stimulation, DTT: diffusion tensor tractography, MBC:
modified Brunnstrom classification, and UMI: motricity index of upper extremity.

a Assessment within 24 h of onset.
b All patients showed scores of 0.

110 S.H. Jang et al. / Journal of the Neurological Sciences 290 (2010) 107–111
group, while no patient in the TMS (+) group belonged to the Poor
group (Table 3).

3.3. Diffusion tensor tractography

In terms of the changes of MBC scores from onset to 6 month
evaluation, the DTT (+) group (4.75±1.70) showed greater im-
provement than the DTT (−) group (1.57±0.87) (p=0.000). The
changes of UMI scores from onset to 6 month evaluation differed
according to the DTT group (p=0.000), with the DTT (+) group
(74.09±21.10) showing better recovery than the DTT (−) group
(33.62±21.27) (Table 2).

In classification by MBC scores, 20 (95.2%) patients in the DTT (−)
group belonged to the Poor group, and 8 (25.0%) out of 32 patients in
the DTT (+) group belonged to the Poor group. As for the Good group,
only 1 patient in the DTT (−) group and 24 (75.0%) of 32 patients in
the DTT (+) group were included. In terms of UMI classification, 18
(85.7%) of 21 patients in the DTT (−) group and 4 (12.5%) of 32
patients in the DTT (+) group belonged to the Poor group. Twenty-
eight (87.5%) of 32 patients in the DTT (+) groupwere included in the
Good group, while three patients in the DTT (−) group was in the
Good group (Table 3).

3.4. Comparison of transcranial magnetic stimulation and diffusion tensor
imaging

Under conditions in which 40% patients of all patients showed a
favorable prognosis, TMS showed a relatively higher positive predictive
value (MBC; 0.96, UMI: 1.00) than DTT (MBC; 0.75; UMI; 0.88) in
predictingmotor outcome (Table 4). By contrast, DTT revealed a higher
Table 3
Classification according to the results of transcranial magnetic stimulation and diffusion
tensor tractography.

Classification MBC UMI

Good Poor Good Poor

TMS
TMS (+) 23 22(95.7) 1(4.3) 23(100.0) 0(0.00)
TMS (−) 30 3(10.0) 27(90.0) 8(26.7) 22(73.3)

DTT
DTT (+) 32 24(75.0) 8(25.0) 28(87.5) 4(12.5)
DTT (−) 21 1(4.8) 20(95.2) 3(14.3) 18(85.7)

TMS: transcranial magnetic stimulation, DTT: diffusion tensor tractography, MBC:
modified Brunnstrom classification, and UMI: motricity index of upper extremity.
negative predictive value (MBC; 0.95, UMI; 0.86) than TMS (MBC; 0.90,
UMI; 0.73).

4. Discussion

In the current study, we compared the predictive values of TMS
and DTT for motor outcomes in patients at the early stage of ICH. Our
results indicated that the patients who showed any MEP in TMS and a
preserved CST in DTT had better motor outcomes than those without
these characteristics. Comparing the two evaluation techniques, TMS
revealed higher positive predictive value than DTT. In other words,
MEP at the early stage of ICH was well correlated with good motor
recovery, and there was a good probability of the presence of MEP in a
patient who eventually showed a good motor outcome. By contrast,
DTT had a better negative predictive value than TMS. That is, patients
with disruption of the CST on DTT at the early stage of ICH could be
expected to have poor motor outcomes.

In the current study, we focused on whether the integrity of the
CST could affect themotor outcome by evaluating the presence ofMEP
on TMS and of a preserved CST on DTT. Many studies have reported
that TMS had predictive value for motor outcome in stroke patients
[28–34], and have indicated that stroke patients who showed the
presence of MEP at the day of stroke onset [29,32], within 1 week
[30,31,33] and within 1 month after onset [10,28] had better motor
outcomes than those without MEP. Since the development of DTI [25],
several researchers have reported on the predictive value of DTI for
motor outcome in stroke patients [12–17]. These studies have been
classified into two groups according to what DTI parameters were
used for predictingmotor outcome: one group used DTI parameters in
or around the lesion [12,16,17], and the other used the integrity of the
CST obtained by DTT [4,13–15]. There have been four studies that used
the integrity of the CST as we have in this study. In 2005, Konishi et al.
[4] reported that the degree of CST involvement measured by DTT
performed within 3 days of symptom onset was highly correlated
with a motor deficit and the clinical outcome at 3 months in patients
with an acute lenticulostriate infarct. Three subsequent studies
demonstrated that information on the integrity of the CST obtained
in the early stage (7–30 days) of stroke was useful for predicting
motor outcome in ICH [13], corona radiata infarct [14], and pontine
infarct [15]. Recently, Nelles et al. [35] reported that the degree of CST
disruption on DTI performed within 3 days after onset of anterior
choroidal artery infarct was negatively associated with motor
outcome at 3 months after onset. The results of single evaluation of
TMS or DTT in this study are generally in agreement with the previous
TMS and DTT studies. To the best of our knowledge, there has been no
study on comparison of TMS and DTT for predicting motor outcome at
the early stage of stroke.

In conclusion, TMS and DTT performed at an early stage of ICH have
different advantages in predicting motor outcome. More specifically,
TMS had higher positive predictive value than DTT, while DTT had
higher negative predictive value than TMS. These results could provide
invaluable clinical information for the prediction of motor outcomes in
stroke patients, and have important implications in terms of motor
Table 4
Comparison of transcranial magnetic stimulation and diffusion tensor tractography in
predicting motor outcome.

Variables Positive predictive value Negative predictive value

MBC
TMS 0.91 0.93
DTT 0.72 1.00

UMI
TMS 0.78 0.93
DTT 0.59 0.95

TMS: transcranial magnetic stimulation, DTT: diffusion tensor tractography, MBC:
modified Brunnstrom classification, and UMI: motricity index of upper extremity.
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recovery following stroke. TMS and DTT have unique advantages. TMS
has better clinical and economical accessibility than DTT. On the other
hand, DTT has distinguished strength of visualizing neural tracts. We
think that the small number of patients examined is a limitation of this
study. Another limitation is that we adopted only one parameter about
the presence of the CST among the various parameters of TMS and DTT.
Further complementary studies involving larger case numbers and
more parameters for TMS and DTT are warranted. In addition, we think
that studies on the acute stage of ICH, infarct, or other lesions are needed
in the near future.
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